Experiment with one
parameter:
1 t1 t2 t3 t4 t5 t6
C00122 2084 1296 547 558 314 462
C00042 2093 1248 954 949 342 319
C00036 585 424 372 423 32 13
C00149 2939 2039 1613 1806 322 456
C00026 87 21 16 11 8 7
C00158 5891 2299 1845 1287 1153 1028
C00024 6631 5325 5265 5328 4791 5600
C00091 3301 2475 1503 619 573 548
C00008 638 388 259 247 208 19
C00002 271 183 86 72 44 24
C00022 147 141 87 80 37 39
Experiment with two
parameters:
2 t0 t1 t5 t15 t20 t45 t0 t1 t5 t15 t20 t45
C00122 2084 1296 547 558 314 462 481 1058 1659 2094 2448 2201
C00042 2093 1248 954 949 342 319 342 1072 2051 1731 1993 2508
C00036 585 424 372 423 32 13 86 447 575 529 904 841
C00149 2939 2039 1613 1806 322 456 522 2046 2186 1735 3856 3811
C00026 87 21 16 11 8 7 5 79 69 81 93 87
C00158 5891 2299 1845 1287 1153 1028 1192 5275 6559 7350 7748 10009
C00024 6631 5325 5265 5328 4791 5600 1658 7215 12635 12387 15913 17871
C00091 3301 2475 1503 619 573 548 1112 2632 3254 4365 3935 4952
C00008 638 388 259 247 208 19 273 513 696 679 676 1047
C00002 271 183 86 72 44 24 179 219 407 380 440 483
C00022 147 141 87 80 37 39 20 531 321 380 411 543
Scaling input data
You will get better results with Metscape if your experimental values are normally distributed. If the range of experimental values is large you may get better results by selecting the scaling option. This will scale the values between 0 and 10 as follows:
Cn*=(Cn-Cmin+1)*10/(Cmax-Cmin+1)
where Cn* is the adjusted concentration of compound n, Cn is the original concentration of compound n, Cmin is the minimal concentration in the data set and Cmax is the highest concentration.